Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Immunol ; 242: 109091, 2022 09.
Article in English | MEDLINE | ID: covidwho-2035866

ABSTRACT

BACKGROUND: The soluble urokinase Plasminogen Activator Receptor (suPAR) has been identified as a reliable marker of COVID-19 severity, helping in personalizing COVID-19 therapy. This study aims to evaluate the correlation between suPAR levels and COVID-19 severity, in relation to the traditional inflammatory markers. METHODS: Sera from 71 COVID-19 patients were tested for suPAR levels using Chorus suPAR assay (Diesse Diagnostica Senese SpA, Italy). suPAR levels were compared with other inflammatory markers: IL-1ß, IL-6, TNF-α, circulating calprotectin, neutrophil and lymphocyte counts, and Neutrophil/Lymphocytes Ratio (NLR). Respiratory failure, expressed as P/F ratio, and mortality rate were used as indicators of disease severity. RESULTS: A positive correlation of suPAR levels with IL-6 (r = 0.479, p = 0.000), TNF-α (r = 0.348, p = 0.003), circulating calprotectin (r = 0.369, p = 0.002), neutrophil counts (r = 0.447, p = 0.001), NLR (r = 0.492, p = 0.001) has been shown. Stratifying COVID-19 population by suPAR concentration above and below 6 ng/mL, we observed higher levels of circulating calprotectin (10.1 µg/mL, SD 7.9 versus 6.4 µg/mL, SD 7.5, p < 0.001), higher levels of P/F ratio (207.5 IQR 188.3 vs 312.0 IQR 127.8, p = 0.013) and higher mortality rate. Median levels of suPAR were increased in all COVID-19 patients requiring additional respiratory support (Nasal Cannula, Venturi Mask, BPAP and CPAP) (6.5 IQR = 4.9) compared to the group at room air (4.6 IQR = 4.2). CONCLUSION: suPAR levels correlate with disease severity and survival rate of COVID-19 patients, representing a promising prognostic biomarker for the risk assessment of the disease.


Subject(s)
COVID-19 , Receptors, Urokinase Plasminogen Activator , Biomarkers , Humans , Interleukin-6 , Leukocyte L1 Antigen Complex , Prognosis , Receptors, Urokinase Plasminogen Activator/metabolism , Tumor Necrosis Factor-alpha
2.
PLoS Pathog ; 18(4): e1010443, 2022 04.
Article in English | MEDLINE | ID: covidwho-1892330

ABSTRACT

Metabolomics and lipidomics have been used in several studies to define the biochemical alterations induced by COVID-19 in comparison with healthy controls. Those studies highlighted the presence of a strong signature, attributable to both metabolites and lipoproteins/lipids. Here, 1H NMR spectra were acquired on EDTA-plasma from three groups of subjects: i) hospitalized COVID-19 positive patients (≤21 days from the first positive nasopharyngeal swab); ii) hospitalized COVID-19 positive patients (>21 days from the first positive nasopharyngeal swab); iii) subjects after 2-6 months from SARS-CoV-2 eradication. A Random Forest model built using the EDTA-plasma spectra of COVID-19 patients ≤21 days and Post COVID-19 subjects, provided a high discrimination accuracy (93.6%), indicating both the presence of a strong fingerprint of the acute infection and the substantial metabolic healing of Post COVID-19 subjects. The differences originate from significant alterations in the concentrations of 16 metabolites and 74 lipoprotein components. The model was then used to predict the spectra of COVID-19>21 days subjects. In this group, the metabolite levels are closer to those of the Post COVID-19 subjects than to those of the COVID-19≤21 days; the opposite occurs for the lipoproteins. Within the acute phase patients, characteristic trends in metabolite levels are observed as a function of the disease severity. The metabolites found altered in COVID-19≤21 days patients with respect to Post COVID-19 individuals overlap with acute infection biomarkers identified previously in comparison with healthy subjects. Along the trajectory towards healing, the metabolome reverts back to the "healthy" state faster than the lipoproteome.


Subject(s)
COVID-19 , Edetic Acid , Humans , Lipoproteins , Metabolomics/methods , SARS-CoV-2
3.
Clin Chem Lab Med ; 60(6): 934-940, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1753223

ABSTRACT

OBJECTIVES: Evaluating anti-SARS-CoV-2 antibody levels is a current priority to drive immunization, as well as to predict when a vaccine booster dose may be required and for which priority groups. The aim of our study was to investigate the kinetics of anti-SARS-CoV-2 Spike S1 protein IgG (anti-S1 IgG) antibodies and neutralizing antibodies (NAbs) in an Italian cohort of healthcare workers (HCWs), following the Pfizer/BNT162b2 mRNA vaccine, over a period of up to six months after the second dose. METHODS: We enrolled 57 HCWs, without clinical history of COVID-19 infection. Fluoroenzyme-immunoassay was used for the quantitative anti-S1 IgG antibodies at different time points T1 (one month), T3 (three months) and T6 (six months) following the second vaccine shot. Simultaneously, a commercial surrogate virus neutralization test (sVNT) was used for the determination of NAbs, expressed as inhibition percentage (% IH). RESULTS: Median values of anti-S1 IgG antibodies decreased from T1 (1,452 BAU/mL) to T6 (104 BAU/mL) with a percent variation of 92.8% while the sVNT showed a percent variation of 34.3% for the same time frame. The decline in anti-S1 IgG antibodies from T1 to T6 was not accompanied by a loss of the neutralizing capacity of antibodies. In fact at T6 a neutralization percentage <20% IH was observed only in 3.51% of HCWs. CONCLUSIONS: Our findings reveal that the decrease of anti-S1 IgG levels do not correspond in parallel to a decrease of NAbs over time, which highlights the necessity of using both assays to assess vaccination effectiveness.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , Immunoglobulin G , SARS-CoV-2 , Serologic Tests , Vaccines, Synthetic , mRNA Vaccines
5.
Riv. Ital. Med. Labor. ; 1(16):7-17, 2020.
Article in Italian | ELSEVIER | ID: covidwho-659439

ABSTRACT

COVID-19 infection (SARS-CoV-2) is a viral disease first encountered in Wuhan, China, in December 2019, then rapidly spreading around the world. During this current public health emergency of international concern, screening and diagnosing patients quickly in order to aid containment is a priority. Most of our knowledge on diagnostics comes from previous studies on SARSCoV. Since SARS-CoV-2 belongs to the same large family of viruses as those that cause the MERS and SARS outbreak, we could assume that its antibody generation process should be similar. The high contagiousness and the characteristics of high lethality of the epidemic require efficient diagnostics, able to quickly identify the sources of the infection. The identification of patients with active SARS-CoV-2 infection is currently based on the amplification of a viral genome sequence using molecular biology techniques (real-time polymerase chain reaction), which can be subsequently confirmed by gene sequencing. However, the variability linked to the execution of the swab and the limitations of the test (complexity, biosecurity levels, costs and long response times) makes molecular diagnostics unsuitable for use in the field. Consequently, new tools such as serological tests capable of tracking the virus through each phase of the disease are in great demand. Serological antibody tests are already being developed and have already been introduced to the market. To date, however, there is no robust scientific evidence on the clinical-diagnostic reliability of these tests which therefore, at the moment, cannot replace the molecular test. The few studies in the literature are of limited thickness, sometimes discordant with each other and conducted on a small scale mainly on the Chinese population. In the absence of specific references, there is an open debate on the best use of these serological tests and on the ideal moment of their execution. In this review we describe the main characteristics of the SARS-CoV-2 virus, the diagnostic molecular strategies available today, and the first experimental data on the determination of antibodies directed towards SARS-CoV-2.

6.
J Med Virol ; 92(9): 1671-1675, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-116658

ABSTRACT

A pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading throughout the world. Though molecular diagnostic tests are the gold standard for COVID-19, serological testing is emerging as a potential surveillance tool, in addition to its complementary role in COVID-19 diagnostics. Indubitably quantitative serological testing provides greater advantages than qualitative tests but today there is still little known about serological diagnostics and what the most appropriate role quantitative tests might play. Sixty-one COVID-19 patients and 64 patients from a control group were tested by iFlash1800 CLIA analyzer for anti-SARS CoV-2 antibodies IgM and IgG. All COVID-19 patients were hospitalized in San Giovanni di Dio Hospital (Florence, Italy) and had a positive oro/nasopharyngeal swab reverse-transcription polymerase chain reaction result. The highest sensitivity with a very good specificity performance was reached at a cutoff value of 10.0 AU/mL for IgM and of 7.1 for IgG antibodies, hence near to the manufacturer's cutoff values of 10 AU/mL for both isotypes. The receiver operating characteristic curves showed area under the curve values of 0.918 and 0.980 for anti-SARS CoV-2 antibodies IgM and IgG, respectively. iFlash1800 CLIA analyzer has shown highly accurate results for the anti-SARS-CoV-2 antibodies profile and can be considered an excellent tool for COVID-19 diagnostics.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , Immunoassay , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Luminescent Measurements , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Antibodies, Viral/blood , Automation, Laboratory , COVID-19/virology , Female , Humans , Immunoassay/methods , Immunoassay/standards , Immunoglobulin G/blood , Immunoglobulin M/blood , Luminescent Measurements/methods , Luminescent Measurements/standards , Male , Middle Aged , ROC Curve , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL